
114 SEPTEMBER 1999 Embedded Systems Programming

N I G E L J O N E S

f
e

a
t

u
r

e

ne of the least used but
potentially most useful
preprocessor directives is
#error. I would guess
that only a small percent-
age of the readers of this

article know what #error is, and an
even smaller percentage have actually
used it. This is a shame, because
#error has a couple of uses that are
invaluable for making your life a lot
easier.

So what exactly is the #errordirec-
tive and what does it do? It’s an ANSI-
C specified preprocessor directive. Its
syntax is very straightforward, as you
can see:

#error <writer supplied error mes-

sage>

The <writer supplied error mes-
sage> is optional (although it never
really makes sense to omit it) and can
consist of any printable text. You don’t
even have to enclose the text in
quotes.

When the preprocessor encounters
a #error statement, it causes compila-
tion to terminate and the writer-sup-
plied error message to be printed to
stderr. A typical error message from a
compiler looks like this:

Filename(line_number): Error!

Ennnn: writer supplied error message

where Filenameis the source file name,
line_number is the line number where
the #error statement is located, and
Ennnn is a compiler-specific error num-
ber. Thus, the error message is basical-
ly indistinguishable from ordinary
compiler error messages.

“Wait a minute,” you might say. “I
spend enough time trying to get code
to compile and now he wants me to do
something that causes more compiler
errors?” Absolutely! The essential
point is that code that compiles but is
incorrect is worse than useless. I’ve
found three general areas in which this

In Praise of the
#errorDirective
The #error directive may not be a widely used preprocessor directive, but according to the
author, it can make your life easier. Here’s his case.

O

Embedded Systems Programming SEPTEMBER 1999 115

problem can arise and #error can
help. Read on and see if you agree
with me.

Protecting a work in
progress
I tend to code using a step-wise refine-
ment approach, so it isn’t unusual dur-
ing development for me to have func-
tions that do nothing, for loops that
lack a body, and so forth.
Consequently, I often have files that
are compilable but lack some essential
functionality. Working this way is fine,
until I’m pulled off to work on some-
thing else (an occupational hazard of
being in the consulting business).
Because these distractions can occa-
sionally run into weeks, I sometimes
return to the job with my memory a lit-
tle hazy about what I haven’t complet-
ed. In the worst-case scenario (which
has occurred), I perform a make, which
runs happily, and then I attempt to use
the code. The program, of course,
crashes and burns, and I’m left won-
dering where to start.

In the past, I’d comment the file to
note what had been done and what
was still needed. However, I found this
approach to be rather weak because I
then had to read all my comments
(and I comment heavily) in order to
find what I was looking for. Now I sim-
ply enter something like the following
in an appropriate place in the file:

#error *** Nigel - Function foo

is incomplete. Fix before using

Thus, if I forget that I haven’t done
the necessary work, an inadvertent
attempt to use the file will result in just
about the most meaningful compiler
message I’ll ever receive (after all, I
wrote it). Furthermore, it saves me
from having to wade through pages of

comments, trying to find what work I
haven’t finished.

Protecting compiler-
dependent code
As much as I strive to write portable
code, I often find myself having to
trade off performance for portabili-
ty—and in the embedded world, per-
formance tends to win. However, what
happens if a few years later I reuse
some code without remembering that
the code has compiler-specific pecu-
liarities? The result is a much longer
debug session than is necessary. But a
judicious #error statement can pre-
vent a lot of grief. A couple of exam-
ples may help.

Example 1
Some floating-point code requires at
least 12 digits of resolution to return
the correct results. Accordingly, the
various variables are defined as type
long double. But ANSI only requires
that a long double have 10 digits of
resolution. Thus on certain machines,
a long double may be inadequate to
do the job. To protect against this, I
would include the following:

#include <float.h>

#if (LDBL_DIG < 12)

#error *** long doubles must

have at least 12 digit resolu-

tion. Do not use this compiler!

#endif

This approach works by examining
the value of an ANSI-mandated con-
stant found in float.h. Incidentally, this
is one of the few uses I’ve found for the
various ANSI-mandated constants.

Example 2
An amazing amount of code makes
invalid assumptions about the under-

lying size of the various integer types.
If you have code that has to use an int
(as opposed to a user-specified data
type such as INT16), and the code
assumes that an int is 16 bits, you can
do the following:

#include <limits.h>

#if (INT_MAX != 32767)

#error *** This file will only

work with 16 bit integers. Do

not use this compiler! ***

#endif

Again, this works by checking the
value of an ANSI-mandated constant.
This time the constant is found in the
file limits.h.

This approach is a lot more useful
than putting these limitations inside a
big comment that someone may or
may not read. After all, you have to
read the compiler error messages.

Properly handling condi-
tionally compiled code
Since conditionally compiled code
seems to be a necessary evil in life, it’s
common to find code sequences such
as the following:

#if defined OPT_1

/* Do option_1 */

#else

/* Do option_2 */

#endif

As it is written, this code means the
following: if and only if OPT_1 is
defined, we will do option_1; other-
wise we’ll do option_2. The problem
with this code is obvious. A user of the
code doesn’t know (without explicitly
examining the code) that OPT_1 is a
valid compiler switch. Instead, the
naïve user will simply compile the
code without defining OPT_1 and get
the alternate implementation, irre-

“Wait a minute,” you might say. “I spend enough time trying to get

code to compile and now he wants me to do something that causes

more compiler errors?” Absolutely!

B
E

N

F
I

S
H

M
A

N

#
error

spective of whether that is what’s
required or not. A more considerate
coder might be aware of this problem,
and instead do the following:

#if defined OPT_1

/* Do option 1 */

#elif defined OPT_2

/* Do option 2*/

#endif

In this case, failure to define either
OPT_1 or OPT_2 will typically result in
an obscure compiler error at a point
later in the code. The user of this code
will then be stuck with trying to work
out what must be done to get the mod-
ule to compile. This is where #error
comes in. Consider the following code
sequence:

#if defined OPT_1

/* Do option_1 */

#elif defined OPT_2

/* Do option_2 */

#else

#error *** You must define OPT_1

or OPT_2 to compile this file ***

#endif

Now the compilation fails, but at
least it tells the user explicitly what to
do to make the module compile. I
know that if this procedure had been
adopted universally, I would have
saved a lot of time over the years trying
to reuse other people’s code.

So there you have it. Now tell me,
don’t you agree that #error is a really
useful part of the preprocessor, worthy
of your frequent use—and occasional
praise? esp

Nigel Jones is a consultant on all aspects of
embedded development. He particularly
likes working on small, distributed systems.
Reach him at NAJones@compuserve.com.

116 SEPTEMBER 1999 Embedded Systems Programming

I know that if this procedure

had been adopted universally, I

would have saved a lot of time

over the years trying to reuse

other people’s code.

	return:

