
The reasons for the popularity of
C in the embedded realm are clear:
easy access to hardware, low memo-
ry requirements, and efficient run-
time performance being foremost
among them. Equally well known
are the problems with C: highly lim-
ited run-time checking, a syntax that
is prone to stupid mistakes that are
technically legal, and a myriad of
areas where the ISO C standard
explicitly states that the behavior is
either implementation defined or unde-
fined.

In the hands of a truly experienced
programmer, most of the limitations
of C can be avoided. Of course, that
leaves the problem of inexperienced
programmers. The problem is similar
to the dilemma faced by parents when
their offspring learn to drive. The
solution that most parents adopt is to
give their child a large, slow lumber-
ing vehicle with excellent brakes; few
hand over the keys to a high perfor-
mance sports car.

ISO C is like a high performance
vehicle—with very questionable
brakes. Despite this, organizations
have little choice other than to let
their beginners loose with the lan-
guage. The results are predictable and
well documented.

So, what can be done? The UK-
based Motor Industry Software
Reliability Association (MISRA) real-
ized that in many areas of an automo-
bile design, safety is of paramount
importance. They also recognized that

C was the de facto language for coding
such systems and that these systems
are, therefore, vulnerable to C’s limi-
tations. Rather than mandating the
use of a safer language such as Ada,
the organization looked at ways to
make C safer.

The result was a set of
“Guidelines for the Use of the C
Language in Vehicle-Based Soft-
ware,” or “MISRA C,” as they are
more informally known. The guide-
lines, which were first published in
1998, comprise a 70-page document
that describes a workable subset of C
that avoids many of its well-known
problems. (Unfortunately, you have
to buy the document from MISRA. It
is available at www.misra.org.uk for
about $50.)

The MISRA C document contains
eight chapters and two appendices
and was obviously written by experi-
enced embedded programmers.
Chapters 1 through 6 contain
important information about the
rationale for MISRA C and how to
interpret the rules. These chapters
should be read prior to diving into
the actual rules, which are found in
Chapter 7.

Guidelines

In all, MISRA C has 127 rules. Of
these, 93 are required and the
remaining 34 are advisory. The dis-
tinction between these two types of
rules is important. C code that

claims conformance to MISRA C
must comply with all 93 required
rules. Conforming code should
adhere to the advisory rules as much
as is practical. In other words, either
you buy into the spirit of MISRA C or
you don’t.

With this in mind, it’s time to dis-
cuss the rules themselves. The exam-
ple rules are quoted verbatim, in
part to illustrate the tone and style
of the guidelines. Let’s start at the
beginning:

Rule 1 (required): All code shall conform to
ISO 9899 standard C, with no extensions
permitted.

When I first read this, I laughed out
loud. Since the C standard was not
originally written with embedded
systems in mind, it is impossible to
write a non-trivial embedded pro-
gram without resorting to a variety
of compiler extensions. For exam-
ple, ISO C provides no way to speci-
fy that a function is an interrupt ser-
vice routine. (MISRA frowns upon
assembly language, so you can’t use
that as a way to skirt the issues.)

Fortunately, in reading the notes
associated with rule 1, one finds the
following comment:

It is recognized that it may be necessary to
raise deviations (as described in section
5.3.2) to permit certain language exten-
sions, for example to support hardware spe-
cific features.

Embedded Systems Programming JULY 2002 55

B E G I N N E R ’ S C O R N E R

MISRA C Guidelines

✁
C

U
T

H
E
R

E
 ✁

by Nigel Jones

The deviations mentioned in the
comment are, arguably, the
strongest feature of MISRA C. In
putting together the rules, the
authors recognized that they could
not possibly foresee all the circum-
stances associated with all embedded
systems. Thus, they put in place a
mechanism by which an organiza-
tion can formally deviate from a
given rule. Note that this does not
mean that the programmer is free to
violate the rules on a whim. Rather it
means that all violations must be
carefully considered, justified, and
documented.

MISRA also recommends that devi-
ations be localized as much as possi-
ble—such as, all I/O operations be
performed in one file. Notwithstand-
ing MISRA C, this is good program-
ming practice anyway.

Most of the other rules are com-
mon sense and are succinctly stated.
For instance:

Rule 20 (required): All object and function
identifiers shall be declared before use.

Any programmer who has a problem
with this rule probably needs to find a
new line of work.

Some of the rules are more stylistic
in their intent and, as such, are more
likely to offend individual sensibilities.
This is particularly true of the advisory
rules, such as:

Rule 49 (advisory): Tests of a value
against zero should be made explicit, unless
the operand is effectively Boolean.

This rule goes against my own pre-
ferred style of coding. However, I see
where the authors are going and
wouldn’t exactly be compromising
deeply held beliefs by conforming to
their advice.

While rule 49 isn’t going to change
much in the way most people write
code, rule 104 could have a bigger
impact.

Rule 104 (required): Non-constant pointers
to functions shall not be used.

The use of pointers to functions is a
favored technique of many experi-
enced embedded programmers.1

The bottom line: regardless of your
experience level, if you choose to go
down the MISRA C path, expect to
have to change the way you code in
both big and small ways.

Compliance checking

In writing these rules, the authors
appear to have tried very hard to make
compliance checking via static analysis
possible for as many rules as possible.
Static analysis is a fancy term meaning
that a computer program could be
written to check for violations of the
rules.

The most obvious program to do
the compliance checking is a com-
piler. In fact, several embedded
compiler vendors, including Green
Hills and Tasking (now Altium), do
offer compilers with MISRA compli-
ance switches. Does this mean that
you have to use a subset of the com-
pilers out there in order to get com-
pliance checking? Fortunately, no!
PC-Lint (from Gimpel) now offers
MISRA compliance checking as
well.2

Unfortunately, though, not all of
the rules can be enforced automatical-
ly. For the other 23 rules, the only
available enforcement mechanism is a
code review. So, if nothing else, adher-
ence to MISRA C guarantees that your
organization will have to conduct code
reviews.

MISRA recommends the use of a
compliance matrix to track how your
organization intends to check its con-
formance to each rule.

Final thoughts

Many organizations that develop soft-
ware, particularly in the U.S., have not
even heard of MISRA C—let alone
require its use. However, this doesn’t
mean that as an individual developer
you shouldn’t consider adopting these
guidelines on your own. After all, this
is a tool to help you write safer, more
portable code.

For those of you who can’t handle
the effort of formally adopting MISRA
C, you should, at the very least, exam-
ine the rules. If you see rules that con-
tradict your normal coding style, then I
suggest you look long and hard at your
practices. Chances are that the MISRA
folks are older and wiser than you.

MISRA C does nothing for check-
ing the validity of your algorithms. It
doesn’t enforce a particular style,
and it cannot stop you from writing
completely idiotic code. What it will
do—if you let it—is protect you from
most of the darker corners of the C
language. esp

Nigel Jones is a consultant based in
Maryland. He likes his sports car and is
developing strategies for keeping his teenage
son away from the wheel. To send tips on
effective parenting techniques, or to com-
ment on this article, contact him at
NAJones@compuserve.com

References
1. Jones, Nigel. “Arrays of Pointers to

Functions,” Embedded Systems

Programming, May 1999, p. 46.

2. Jones, Nigel. “Beginners Corner: Lint,”

Embedded Systems Programming, May

2002, p. 55.

B E G I N N E R ’ S C O R N E R

56 JULY 2002 Embedded Systems Programming

✁
C

U
T

H
E
R

E
 ✁

EMBEDDED SYSTEMS PROGRAMMING (ISSN 1040-3272) is published monthly, with an additional issue published in August, by CMP Media LLC., 600 Harrison Street, San Francisco, CA 94107, (415) 947-6000. Please
direct advertising and editorial inquiries to this address. SUBSCRIPTION RATE for the United States is $55 for 13 issues. Canadian/Mexican orders must be accompanied by payment in U.S. funds with additional postage of
$6 per year. All other foreign subscriptions must be prepaid in U.S. funds with additional postage of $15 per year for surface mail and $40 per year for airmail. POSTMASTER: All subscription orders, inquiries, and address
changes should be sent to EMBEDDED SYSTEMS PROGRAMMING, P.O. Box 3404, Northbrook, IL 60065-9468. For customer service, telephone toll-free (877) 676-9745. Please allow four to six weeks for change of address
to take effect. Periodicals postage is paid at San Francisco, CA and additional mailing offices. EMBEDDED SYSTEMS PROGRAMMING is a registered trademark owned by the parent company, CMP Media LLC. All material
published in EMBEDDED SYSTEMS PROGRAMMING is copyright © 2002 by CMP Media LLC. All rights reserved. Reproduction of material appearing in EMBEDDED SYSTEMS PROGRAMMING is forbidden without per-
mission. EMBEDDED SYSTEMS PROGRAMMING is available on microfilm/fiche from University Microfilms International, 300 N. Zeeb Rd., Ann Arbor, MI 48106, (313) 761-4700.

	return:

